При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Прибор, предназначенный для измерения температуры тела, — это:

1) линейка

2) термометр

3) амперметр

4) барометр

5) динамометр

2. В таблице представлено изменение с течением времени координаты автомобиля, движущегося с постоянным ускорением вдоль оси Ox.

Момент времени t , с	0,0	2,0	4,0
Координата x , м	-3,0	0,0	9,0

Проекция ускорения a_x автомобиля на ось Ox равна:

1) 1.0 m/c^2 2) 1.5 m/c^2 3) 2.0 m/c^2 4) 2.5 m/c^2 5) 3.0 m/c^2

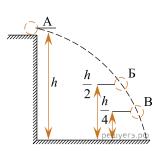
3. Поезд, двигаясь равноускоренно по прямолинейному участку железной дороги, за промежуток времени $\Delta t = 20$ с прошёл путь s = 340 м. Если в конце пути модуль скорости поезда v = 19 м/с, то модуль скорости v_0 в начале пути был равен:

1) 10 m/c

2) 12 m/c

3) 13 m/c

4) 15 m/c


5) 16 m/c

4. На материальную точку массой m=0.50 кг действуют две силы, модули которых $F_1=4.0~{\rm H}$ и $F_2 = 3.0$ H, направленные под углом $\alpha = 90^\circ$ друг к другу. Модуль ускорения a этой точки равен:

1) 2.0 m/c^2 2) 5.0 m/c^2 3) 8.5 m/c^2 4) 10 m/c^2

5) 14 m/c^2

5. С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис). Если в точке B полная механическая энергия камня W = 20 Дж, то в точке Б она равна:

1) 0 Дж

2) 20 Дж

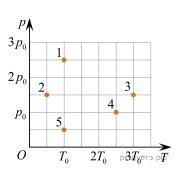
3) 30 Дж

4) 40 Дж

5) 60 Дж

6. Вдоль резинового шнура распространяется волна со скоростью, модуль которой V = 3.0 м/c. Если частота колебаний частиц шнура $v = 2.0~\Gamma$ ц, то разность фаз $\Delta \phi$ колебаний частиц, для которых положения равновесия находятся на расстоянии l = 75 см, равна:

1) $\pi/2$ рад

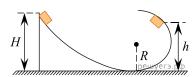

2) π рад

3) $3\pi/2$ рад

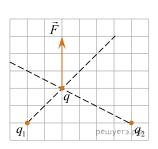
2π рад

4π рад

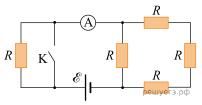
7. На p-T диаграмме изображены различные состояния идеального газа. Состояние с наибольшей концентрацией n_{\max} молекул газа обозначено цифрой:

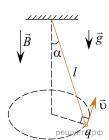


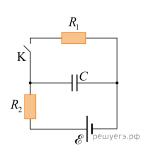
8. Если при изотермическом расширении идеального газа, количество вещества которого постоянно, давление газа уменьшилось на $\Delta p = 80$ кПа, а объем газа увеличился в k = 5,00 раз, то давление p_2 газа в конечном состоянии равно:


9. В закрытом баллоне находится v=2,00 моль идеального одноатомного газа. Если газу сообщили количество теплоты Q=18,0 кДж и его давление увеличилось в k=3,00 раза, то начальная температура T_1 газа была равна:

10. Сосуд, плотно закрытый подвижным поршнем, заполнен воздухом. В результате изотермического расширения объём воздуха в сосуде увеличился в два раза. Если относительная влажность воздуха в конечном состоянии $\phi_2=40\%$, то в начальном состоянии относительная влажность ϕ_1 воздуха была равна:

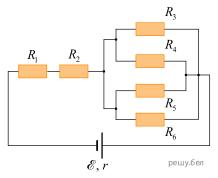

- 11. Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon=22~\frac{\rm M}{\rm c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя t=0,80 с, а модуль ускорения автомобиля при торможении $a=5,0~\frac{\rm M}{\rm c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- **12.** На горизонтальном полу лифта, двигающегося с направленным вниз ускорением, стоит чемодан массой $m=30~{\rm K}\Gamma$, площадь основания которого $S=0,080~{\rm M}^2$. Если давление, оказываемое чемоданом на пол, $p=2,4~{\rm K}\Pi{\rm a}$, то модуль ускорения a лифта равен ... $\frac{{\cal A}{\rm M}}{{\rm c}^2}$.
- **13.** На дне вертикального цилиндрического сосуда, радиус основания которого R=10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m=215 г, а длина его стороны a=10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды ($\rho_{\rm B}=1,00$ г/см³), равный ... **см**³.
- **14.** С высоты H=80 см из состояния покоя маленький брусок начинает соскальзывать по гладкой поверхности, плавно переходящей в полуцилиндр радиусом R=50 см (см. рис.). Если траектория движения бруска лежит в вертикальной плоскости, то высота h, на которой брусок оторвётся от внутренней поверхности полуцилиндра, равна ... см.


- 15. Зависимость координаты x пружинного маятника, совершающего колебания вдоль горизонтальной оси Ox, от времени t имеет вид $x(t) = A\sin(\omega t + \varphi_0)$, где $\omega = \frac{17\pi}{18}~{\rm pag/c}$, $\varphi_0 = \frac{2\pi}{9}~{\rm pag}$. Если в момент времени t=1,0 с потенциальная энергия пружины $E_{\pi} = 9,0~{\rm MДж}$, то полная механическая энергия E маятника равна ... мДж.
- 16. Небольшой пузырёк воздуха медленно поднимается вверх со дна водоёма. На глубине $h_1=80$ м температура воды ($\rho=1,0\frac{\Gamma}{{\rm CM}^3}$) $t_1=7,0^{\circ}{\rm C}$, а объём пузырька V_1 . Если атмосферное давление $p_0=1,0\cdot 10^5$ Па, то на глубине $h_2=2,0$ м, где температура воды $t_2=17^{\circ}{\rm C}$, на пузырёк действует выталкивающая сила, модуль которой $F_2=3,5$ мН, то объем пузырька V_1 был равен ... мм 3 .
- 17. В тепловом двигателе рабочим телом является одноатомный идеальный газ, количество вещества которого постоянно. Газ совершил цикл, состоящий из двух изохор и двух изобар. При этом максимальное давление газа было в четыре раза больше минимального, а максимальный объём газа в n = 2,5 раза больше минимального. Коэффициент полезного действия η цикла равен ... %.
- **18.** На точечный заряд q, находящийся в электростатическом поле, созданном зарядами q_1 и q_2 , действует сила \vec{F} (см.рис.). Если заряд $q_1=5,1$ нКл, то заряд q_2 равен ...нКл.


19. В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R, а внутреннее сопротивление источника тока пренебрежимо мало. Если до замыкания ключа K идеальный амперметр показывал силу тока $I_1 = 15$ мА, то после замыкания ключа K амперметр покажет силу тока I_2 , равную ... мА.

- **20.** Сила тока в проводнике зависит от времени t по закону I(t) = B + Ct, где B = 2,0 А, C = 1,0 А/с. Чему равен заряд q, прошедший через поперечное сечение проводника в течение промежутка времени от $t_1 = 8,0$ с до $t_2 = 12$ с? Ответ приведите в кулонах.
- **21.** В вакууме в однородном магнитном поле, линии индукции которого вертикальны, а модуль индукции B=6,0 Тл, на невесомой нерастяжимой непроводящей нити равномерно вращается небольшой шарик, заряд которого q=0,30 мкКл (см. рис.). Модуль линейной скорости движения шарика $\upsilon=31$ см/с масса шарика m=30 мг. Если синус угла отклонения нити от вертикали $\sin\alpha=0,10$, то чему равна длина l нити равна? Ответ приведите в сантиметрах.

22. Электрическая цепь состоит из источника постоянного тока с ЭДС ε = 300 B, двух резисторов сопротивлениями R_1 = 100 Om, R_2 = 200 Om и конденсатора ёмкостью C = 10 мкФ (см. рис.). В начальный момент времени ключ К был замкнут и в цепи протекал постоянный ток. Если внутренним сопротивлением источника тока пренебречь, то после размыкания ключа К на резисторе R_2 выделится количество теплоты Q, равное ... мДж

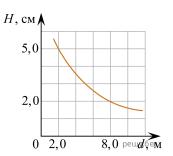

- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1 = 480$ нм дифракционный максимум третьего порядка ($m_1 = 3$) наблюдается под углом θ , то максимум четвертого порядка ($m_2 = 4$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите нанометрах.
- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=80~000$ ядер радиоактивного изотопа золота $^{198}_{79}{
 m Au}$. Если период полураспада этого изотопа $T_{\frac{1}{2}}=2,7~{
 m cyt.}$, то за промежуток времени $\Delta t=8,1~{
 m cyt.}$ распадётся ... тысяч ядер $^{198}_{79}{
 m Au}$.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om.}$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm C}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_\Pi=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4\ \frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мкФ.

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

